Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.337
Filtrar
1.
Environ Toxicol Chem ; 43(5): 1062-1074, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477699

RESUMO

Natural and synthetic environmental estrogens (EEs) are widespread and have received extensive attention. Our previous studies demonstrated that depletion of the cytochrome P450 17a1 gene (cyp17a1) leads to all-testis differentiation phenotype in zebrafish and common carp. In the present study, cyp17a1-deficient zebrafish with defective estrogen biosynthesis were used for the evaluation of EEs, as assessed by monitoring vitellogenin (vtg) expression. A rapid and sensitive assessment procedure was established with the 3-day administration of estradiol (E2), followed by examination of the transcriptional expression of vtgs in our cyp17a1-deficient fish. Compared with the control fish, a higher E2-mediated vtg upregulation observed in cyp17a1-deficient zebrafish exposed to 0.1 µg/L E2 is known to be estrogen receptor-dependent and likely due to impaired in vivo estrogen biosynthesis. The more responsive vtg expression in cyp17a1-deficient zebrafish was observed when exposed to 200 and 2000 µg/L bisphenol A (BPA) and perfluoro-1-octanesulfonate (PFOS). The estrogenic potentials of E2, BPA, and PFOS were compared and assessed by the feminization effect on ovarian differentiation in cyp17a1-deficient zebrafish from 18 to 50 days postfertilization, based on which a higher sensitivity of E2 in ovarian differentiation than BPA and PFOS was concluded. Collectively, through the higher sensitivity to EEs and the capacity to distinguish chemicals with different estrogenic potentials exhibited by the all-male cyp17a1-deficient zebrafish with impaired estrogen biosynthesis, we demonstrated that they can be used as an excellent in vivo model for the evaluation of EEs. Environ Toxicol Chem 2024;43:1062-1074. © 2024 SETAC.


Assuntos
Estrogênios , Esteroide 17-alfa-Hidroxilase , Vitelogeninas , Peixe-Zebra , Animais , Masculino , Esteroide 17-alfa-Hidroxilase/genética , Vitelogeninas/genética , Estrogênios/toxicidade , Poluentes Químicos da Água/toxicidade , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Compostos Benzidrílicos/toxicidade , Estradiol , Fenóis/toxicidade , Feminino , Fluorocarbonos/toxicidade , Testículo/efeitos dos fármacos , Testículo/metabolismo
2.
Gen Comp Endocrinol ; 352: 114491, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38494038

RESUMO

Vitellogenin (Vg) is a female-specific egg-yolk precursor protein, synthesized in the liver of fish in response to estrogens. In the present study, complete gene of phosvitinless vitellogenin (vgc) was sequenced, its 3D structure was predicted and validated by web-based softwares. The complete nucleotide sequence of vgc was 4126 bp which encodes for 1272 amino acids and showed the presence of three conserved domains viz. LPD_N, DUF1943 and DUF1944. The retrieved amino acid sequence of VgC protein was subjected to in silico analysis for understanding the structural and functional properties of protein. mRNA levels of multiple vg genes have also been quantified during annual reproductive cycle employing qPCR. A correlation has been observed between seasonal changes in gonadosomatic index with estradiol levels and hepatic expression of three types of vg genes (vga, vgb, vgc) during ovarian cycle of murrel. During preparatory phase, when photoperiod and temperature are low; low titre of E2 in blood induces expression of vgc gene. A rapid increase in the levels of E2 favours induction of vgb and vga genes in liver of murrel during early pre-spawning phase when photoperiod is long and temperature is high in nature. These results suggest that among three vitellogenin proteins, VgC is synthesized earlier than VgA and VgB during oogenesis.


Assuntos
60455 , Vitelogeninas , Animais , Feminino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas do Ovo/genética , Perfilação da Expressão Gênica , Água Doce
3.
J Insect Sci ; 24(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38412292

RESUMO

In this study, a vitellogenin like1 gene (SfVg-like1) in Sogatella furcifera was identified. The open reading frame (ORF) encoded 1,321 amino acid sequence. Structure analysis reveals that the amino acid sequence of SfVg-like1 has 3 conserved LPD_N, DUF1943 and VWFD domains. Phylogenetic analyses showed that SfVg-like1 was clustered in the same branch with the Vg-like1 of Nilaparvata lugens (100% bootstrap value) compared with other Hemiptera insects Vgs associated with vitellogenesis. Temporo-spatial expression analyses showed that SfVg-like1 expressed during all stages, and in both genders. The relative expression levels of SfVg-like1 mRNA were higher in adults than in nymph developmental stages. The knockdown of SfVg-like1 gene resulted in the inhibition of the ovarian development in female adults, whereas the morphology of the testis in male adults was not been affected. The silence of SfVg-like1 could decrease the relative expression levels of target of rapamycin (SfTOR, GenBank MW193765) and vitellogenin (SfVg, GenBank MH271114) genes significantly in female adults. However, the knockdown of SfTOR or SfVg genes in female adults did not affect the transcript level of SfVg-like1. Therefore, it demonstrated that SfVg-like1 might locate on the upstream signaling pathways of SfTOR and SfVg. These results demonstrate that SfVg-like1 is essential for S. furcifera reproduction, and it could be the potential target for the control of this pest.


Assuntos
Hemípteros , Vitelogeninas , Feminino , Masculino , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Filogenia , Sequência de Aminoácidos , Reprodução
4.
Mar Biotechnol (NY) ; 26(2): 243-260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38294574

RESUMO

The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.


Assuntos
Copépodes , MicroRNAs , Vitelogeninas , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Copépodes/genética , Copépodes/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Feminino , Masculino , Regulação da Expressão Gênica , Transcriptoma , Perfilação da Expressão Gênica
5.
PLoS Genet ; 20(1): e1011145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38285728

RESUMO

Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.


Assuntos
Aedes , Anopheles , Malária , Feminino , Animais , Anopheles/genética , Mosquitos Vetores/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Proteínas do Ovo/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Fertilidade/genética , Lipídeos , Aedes/genética , Aedes/metabolismo
6.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256163

RESUMO

Vitellogenin (Vtg) is a precursor of yolk proteins in egg-laying vertebrates and invertebrates and plays an important role in vitellogenesis and embryonic development. However, the Vtg family remains poorly characterized in Exopalaemon carinicauda, a major commercial mariculture species found along the coasts of the Yellow and Bohai Seas. In this study, 10 Vtg genes from the genomes of E. carinicauda were identified and characterized. Phylogenetic analyses showed that the Vtg genes in crustaceans could be classified into four groups: Astacidea, Brachyra, Penaeidae, and Palaemonidae. EcVtg genes were unevenly distributed on the chromosomes of E. carinicauda, and a molecular evolutionary analysis showed that the EcVtg genes were primarily constrained by purifying selection during evolution. All putative EcVtg proteins were characterized by the presence of three conserved functional domains: a lipoprotein N-terminal domain (LPD_N), a domain of unknown function (DUF1943), and a von Willebrand factor type D domain (vWD). All EcVtg genes exhibited higher expression in the female hepatopancreas than in other tissues, and EcVtg gene expression during ovarian development suggested that the hepatopancreas is the main synthesis site in E. carinicauda. EcVtg1a, EcVtg2, and EcVtg3 play major roles in exogenous vitellogenesis, and EcVtg3 also plays a major role in endogenous vitellogenesis. Bilateral ablation of the eyestalk significantly upregulates EcVtg mRNA expression in the female hepatopancreas, indicating that the X-organ/sinus gland complex plays an important role in ovarian development, mostly by inducing Vtg synthesis. These results could improve our understanding of the function of multiple Vtg genes in crustaceans and aid future studies on the function of EcVtg genes during ovarian development in E. carinicauda.


Assuntos
Palaemonidae , Vitelogeninas , Animais , Feminino , Vitelogeninas/genética , Palaemonidae/genética , Filogenia , Desenvolvimento Embrionário , Evolução Molecular
7.
Sci Rep ; 14(1): 1820, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245605

RESUMO

Vitellogenesis is the most important process in animal reproduction, in which yolk proteins play a vital role. Among multiple yolk protein precursors, vitellogenin (Vtg) is a well-known major yolk protein (MYP) in most oviparous animals. However, the nature of MYP in the freshwater gastropod snail Biomphalaria glabrata remains elusive. In the current study, we applied bioinformatics, tissue-specific transcriptomics, ovotestis-targeted proteomics, and phylogenetics to investigate the large lipid transfer protein (LLTP) superfamily and ferritin-like family in B. glabrata. Four members of LLTP superfamily (BgVtg1, BgVtg2, BgApo1, and BgApo2), one yolk ferritin (Bg yolk ferritin), and four soma ferritins (Bg ferritin 1, 2, 3, and 4) were identified in B. glabrata genome. The proteomic analysis demonstrated that, among the putative yolk proteins, BgVtg1 was the yolk protein appearing in the highest amount in the ovotestis, followed by Bg yolk ferritin. RNAseq profile showed that the leading synthesis sites of BgVtg1 and Bg yolk ferritin are in the ovotestis (presumably follicle cells) and digestive gland, respectively. Phylogenetic analysis indicated that BgVtg1 is well clustered with Vtgs of other vertebrates and invertebrates. We conclude that, vitellogenin (BgVtg1), not yolk ferritin (Bg yolk ferritin), is the major yolk protein precursor in the schistosomiasis vector snail B. glabrata.


Assuntos
Biomphalaria , Esquistossomose , Animais , Biomphalaria/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Multiômica , Filogenia , Proteômica , Proteínas do Ovo/metabolismo , Ferritinas/genética , Schistosoma mansoni/metabolismo
8.
Insect Mol Biol ; 33(1): 17-28, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37707297

RESUMO

In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.


Assuntos
Testículo , Vitelogeninas , Feminino , Masculino , Animais , Vitelogeninas/genética , Vitelogeninas/metabolismo , Insetos/genética , Reprodução , Gametogênese
9.
Biol Reprod ; 110(3): 521-535, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38145497

RESUMO

Vitamin D receptors and vitamin D3-metabolizing enzymes have been found to be highly expressed in the ovaries and spermatophores of fish. However, the role of vitamin D3 on fish gonadal development has rarely been reported. In this study, 2-month-old female zebrafish were fed with different concentrations of vitamin D3 diets (0, 700, 1400, and 11 200 IU/kg) to investigate the effects of vitamin D3 on ovarian development. The diet with 0 IU/kg vitamin D3 resulted in elevated interstitial spaces, follicular atresia, and reproductive toxicity in zebrafish ovaries. Supplementation with 700 and 1400 IU/kg of vitamin D3 significantly increased the oocyte maturation rate; upregulated ovarian gonadal steroid hormone synthesis capacity; and elevated plasma estradiol, testosterone, and ovarian vitellogenin levels. Furthermore, the current study identified a vitamin D response element in the cyp19a1a promoter and demonstrated that 1.25(OH)2D3-vitamin D response directly activated cyp19a1a production through activating the vitamin D response element. In conclusion, this study shows that an appropriate concentration of vitamin D3 can promote zebrafish ovarian development and affect vitellogenin synthesis through the vdr/cyp19a1a/er/vtg gene axis.


Assuntos
Colecalciferol , Peixe-Zebra , Animais , Feminino , Colecalciferol/farmacologia , Vitelogeninas/genética , Atresia Folicular , Vitamina D , Hormônios Esteroides Gonadais , Oócitos
10.
J Agric Food Chem ; 72(1): 200-208, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38159287

RESUMO

Spodoptera frugiperda, one of the most destructive corn pests in the world, invaded China in December 2018. In this study, sublethal concentrations (LC10 and LC30) of emamectin benzoate (EB) were used to treat pesticide-free treatment (PFT) and EB treatment (ET) of S. frugiperda. In PFT, compared with the control (CK), the pupal weight, hatching rate, and pupation rate of LC10 and LC30 groups were significantly reduced. The fecundity and the expression of vitellogenin gene (SfVg) were decreased after LC30 treatment, while the LC10 treatment groups showed no significant difference from the control group. In ET, compared to CK, the fecundity was increased by 11.14 and 18.8%. The expression of SfVg was upregulated by 2.6 times after LC30 treatment. Moreover, RNAi-mediated SfVg knockdown resulted in a nearly 70% reduction in oviposition. The result provided a theoretical basis for optimizing the application of EB and Vg-dsRNA in the control of S. frugiperda.


Assuntos
Inseticidas , Praguicidas , Animais , Feminino , Spodoptera , Vitelogeninas/genética , Interferência de RNA , Reprodução , Praguicidas/farmacologia , Larva , Inseticidas/toxicidade
11.
Bull Environ Contam Toxicol ; 112(1): 11, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092994

RESUMO

The present study evaluates the endocrine effect in flatfish through vitellogenin (vtg) gene expression and its association with pollutants data obtained from fish muscle and sediment from two regions in the Gulf of Mexico (GoM): Perdido Fold Belt (northwestern) and the Yucatan Peninsula (southeast). The results revealed induction of vtg in male flatfish in both geographical regions with different levels and patterns of distribution per oceanographic campaign (OC). In the Perdido Fold Belt, vtg was observed in male fish during four OC (carried out in 2016 and 2017), positively associated with Pb, V, Cd and bile metabolites (hydroxynaphthalene and hydroxyphenanthrene). In the Yucatan Peninsula, the induction of vtg in males was also detected in three OC (carried out in 2016 and 2018) mainly associated with Ni, Pb, Al, Cd, V and polycyclic aromatic hydrocarbons. Ultimately, estrogenic alterations could affect reproductive capacity of male flatfish in the GoM.


Assuntos
Disruptores Endócrinos , Poluentes Ambientais , Linguados , Poluentes Químicos da Água , Animais , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Golfo do México , Cádmio , Chumbo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Monitoramento Ambiental/métodos
12.
Int J Mol Sci ; 24(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38138959

RESUMO

The red imported fire ant (Solenopsis invicta Buren) is a social pest species with a robust reproductive ability that causes extensive damage. Identification of the genes involved in queen fertility is critical in order to better understand the reproductive biology and screening for the potential molecular targets in S. invicta. Here, we used the mRNA deep sequencing (RNA-seq) approach to identify differentially expressed genes (DEGs) in the transcriptomes of three reproductive caste types of S. invicta, including queen (QA) and winged female (FA) and male (MA) ants. The genes that were specific to and highly expressed in the queens were then screened, and the Vg2 and Vg3 genes were chosen as targets to explore their functions in oogenesis and fertility. A minimum of 6.08 giga bases (Gb) of clean reads was obtained from all samples, with a mapping rate > 89.78%. There were 7524, 7133, and 977 DEGs identified in the MA vs. QA, MA vs. FA, and FA vs. QA comparisons, respectively. qRT-PCR was used to validate 10 randomly selected DEGs, including vitellogenin 2 (Vg2) and 3 (Vg3), and their expression patterns were mostly consistent with the RNA-seq data. The S. invicta Vgs included conserved domains and motifs that are commonly found in most insect Vgs. SiVg2 and SiVg3 were highly expressed in queens and winged females and were most highly expressed in the thorax, followed by the fat body, head, and epidermis. Evaluation based on a loss-of-function-based knockdown analysis showed that the downregulation of either or both of these genes resulted in smaller ovaries, less oogenesis, and less egg production. The results of transcriptional sequencing provide a foundation for clarifying the regulators of queen fertility in S. invicta. The functions of SiVg2 and SiVg3 as regulators of oogenesis highlight their importance in queen fecundity and their potential as targets of reproductive disruption in S. invicta control.


Assuntos
Formigas , Vitelogeninas , Animais , Feminino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , 60601 , Reprodução/genética , Fertilidade/genética , Formigas/genética
13.
Sci Rep ; 13(1): 18795, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914813

RESUMO

The specific functions and essentiality of type II vitellogenin (Vtg2) in early zebrafish development were investigated in this study. A vtg2-mutant zebrafish line was produced and effects of genomic disturbance were observed in F2 females and F3 offspring. No change in vtg2 transcript has been detected, however, Vtg2 abundance in F2 female liver was 5×, and in 1 hpf F3 vtg2-mutant embryos was 3.8× less than Wt (p < 0.05). Fecundity was unaffected while fertilization rate was more than halved in F2 vtg2-mutant females (p < 0.05). Hatching rate was significantly higher in F3 vtg2-mutant embryos in comparison to Wt embryos. Survival rate declined drastically to 29% and 18% at 24 hpf and 20 dpf, respectively, in F3 vtg2-mutant embryos. The introduced mutation caused vitelline membrane deficiencies, significant mortalities at early embryonic stages, and morphological abnormalities in the surviving F3 vtg2-mutant larvae. Overrepresentation of histones, zona pellucida proteins, lectins, and protein degradation related proteins in F3 vtg2-mutant embryos provide evidence to impaired mechanisms involved in vitellin membrane formation. Overall findings imply a potential function of Vtg2 in acquisition of vitellin membrane integrity, among other reproductive functions, and therefore, its essentiality in early zebrafish embryo development.


Assuntos
Vitelogeninas , Peixe-Zebra , Animais , Feminino , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Genômica , Larva/metabolismo , Vitelinas/metabolismo , Vitelinas/farmacologia , Vitelogeninas/genética , Vitelogeninas/metabolismo , Peixe-Zebra/metabolismo
14.
Ecotoxicol Environ Saf ; 268: 115721, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38000300

RESUMO

Penthiopyrad (PO), a succinate dehydrogenase inhibitor (SDHI) fungicide, poses a potential risk to fish. Here, we investigated the adverse effects of PO on endocrine regulation and reproductive capacity in zebrafish during a 21-d sublethal exposure to PO concentrations ranging from 0.02 to 2.00 mg/L. Following exposure to PO (0.20 and 2.00 mg/L), female-specific effects including follicle necrosis, structural disturbance of the yolk follicle, fusion of cortical follicles appeared in ovarian tissue of adult females, which led to a significant reduction in fertility. Correspondingly, 0.20 and 2.00 mg/L PO led to a marked reduction in the GSI values of females, and 2.00 mg/L PO caused a 31% decline in the proportion of perinucleolar oocytes (PCO) in oocytes. In addition, testosterone (T) level was obviously suppressed and 17ß-estradiol (E2) level was increased in females after exposure to 2.00 mg/L PO. Male zebrafish treated with 0.20 and 2.00 mg/L of PO exhibited significant interstitial enlargement, edema in the testes, and reduced diameter of seminiferous tubules, along with a thinner basement membrane. The effects of PO on males were associated with significant increase in E2 level, suggesting that PO has an estrogenic effect on male fish. Greater E2 levels in serum were further supported by increased transcription levels of genes linked to the hypothalamic-pituitary-gonad-liver (HPGL) axis. Notably, transcription levels of cyp19a, er2b, era, and cyp19b was remarkably increased, exhibiting a clear link with variations in E2 levels. Overall, the present study demonstrates that PO induces reproductive impairment in zebrafish by promoting steroidogenesis.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Masculino , Feminino , Peixe-Zebra/fisiologia , Gônadas , Sistema Endócrino , Pirazóis/farmacologia , Reprodução , Poluentes Químicos da Água/toxicidade , Vitelogeninas/genética , Disruptores Endócrinos/toxicidade
15.
Mar Biotechnol (NY) ; 25(6): 1176-1190, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010485

RESUMO

Inadequate gonadal maturation and poor spawning performance increasingly threaten the sustainability of shrimp aquaculture. Unraveling the mechanisms regulating ovarian development and maturation hence is critical to address industry challenges. Vitellogenin (Vtg), a precursor of yolk protein found in the hepatopancreas and ovary of shrimp, plays a key role in facilitating shrimp's oocyte maturation and embryonic development after oviposition. This study found that FpVtg was specifically expressed in F. penicillatus hepatopancreas and ovary. FpVtg was localized predominantly in the oocyte cytoplasm and distributed uniformly in the hepatopancreas tissue. Silencing FpVtg led to apoptosis in both hepatopancreas and ovary tissues. Furthermore, FpVtg depletion upregulated the expression of ovarian peritrophin 1, ovarian peritrophin 2, serine proteinase inhibitor 6, and juvenile hormone esterase-like carboxylesterase 1, while downregulated that of vitellogenin, delta-9 desaturase, and insulin-like receptor. KEGG pathway analysis implicated such as PI3K-AKT signaling, RNA transport, ECM-receptor interaction, hippo signaling, oocyte meiosis, and apoptosis were enriched and involved in ovarian development. These findings have provided insights into the FpVtg's reproductive role and the associated regulatory genes and pathways in F. penicillatus. This knowledge can contribute to establishing strategies to improve the breeding and aquaculture production of F. penicillatus by elucidating its vitellogenesis regulation in redtail prawn and other penaeid species. Further characterization of the implicated pathways and genes will clarify the intricacies underlying ovarian maturation.


Assuntos
Ovário , Penaeidae , Animais , Feminino , Vitelogeninas/genética , Vitelogeninas/metabolismo , RNA Interferente Pequeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Vitelogênese/genética
16.
J Agric Food Chem ; 71(38): 13979-13987, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37698370

RESUMO

Plants activate direct and indirect defense mechanisms in response to perceived herbivore invasion, which results in negative consequences for herbivores. Tetranychus cinnabarinus is a polyphagous generalist herbivore that inflicts substantial agricultural and horticultural damage. Our study revealed that mite feeding significantly increased jasmonic acid (JA) in the eggplant. The damage inflicted by the mites decreased considerably following the artificial application of JA, thereby indicating that JA initiated the defense response of the eggplant against mites. The transcriptomic and metabolomic analyses demonstrated the activation of the JA-coumarin pathway in response to mite feeding. This pathway protects the eggplant by suppressing the reproductive capacity and population size of the mites. The JA and coumarin treatments suppressed the vitellogenin gene (TcVg6) expression level. Additionally, RNA interference with TcVg6 significantly reduced the egg production and hatching rate of mites. In conclusion, the JA-coumarin pathway in the eggplant decreases the egg-hatching rate of mites through suppression of TcVg6.


Assuntos
Ácaros , Solanum melongena , Tetranychidae , Animais , Ácaros/fisiologia , Solanum melongena/genética , Vitelogeninas/genética , Tetranychidae/genética , Tetranychidae/metabolismo , Reprodução , Ciclopentanos/farmacologia , Ciclopentanos/metabolismo , Oxilipinas/farmacologia , Oxilipinas/metabolismo , Transcriptoma , Herbivoria , Cumarínicos/farmacologia
17.
Mem Inst Oswaldo Cruz ; 118: e220143, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37466532

RESUMO

BACKGROUND: Culex quinquefasciatus, a cosmopolitan, domestic, and highly anthropophilic mosquito, is a vector of pathogenic arboviruses such as West Nile virus and Rift Valley virus, as well as lymphatic filariasis. The current knowledge on its reproductive physiology regarding vitellogenin expression in different tissues is still limited. OBJECTIVES: In this study, we analysed the transcriptional profiles of vitellogenin genes in the fat body and ovaries of C. quinquefasciatus females during the first gonotrophic cycle. METHODS: C. quinquefasciatus ovaries and/or fat bodies were dissected in different times during the first gonotrophic cycle and total RNA was extracted and used for reverse transcription polymerase chain reaction, quantitative real time-PCR, and in situ hybridisation. FINDINGS: We confirmed the classical descriptions of the vitellogenic process in mosquitoes by verifying that vitellogenin genes are transcribed in the fat bodies of C. quinquefasciatus females. Using RNA in situ hybridisation approach, we showed that vitellogenin genes are also transcribed in developing ovaries, specifically by the follicle cells. MAIN CONCLUSIONS: This is the first time that vitellogenin transcripts are observed in mosquito ovaries. Studies to determine if Vg transcripts are translated into proteins and their contribution to the reproductive success of the mosquito need to be further investigated.


Assuntos
Culex , Culicidae , Animais , Feminino , Culex/genética , Vitelogeninas/genética , Vitelogeninas/metabolismo , Ovário/metabolismo , Mosquitos Vetores/genética , RNA/metabolismo
18.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298448

RESUMO

Diaphorina citri, a vector of citrus huanglongbing (HLB) disease, frequently leads to HLB outbreaks and reduces Rutaceae crop production. Recent studies have investigated the effects of RNA interference (RNAi) targeting the Vitellogenin (Vg4) and Vitellogenin receptor (VgR) genes, which are involved in egg formation in this pest, providing a theoretical foundation for developing new strategies to manage D. citri populations. This study presents RNAi methods for Vg4 and VgR gene expression interference and reveals that dsVgR is more effective than dsVg4 against D. citri. We demonstrated that dsVg4 and dsVgR persisted for 3-6 days in Murraya odorifera shoots when delivered via the in-plant system (IPS) and effectively interfered with Vg4 and VgR gene expression. Following Vg4 and VgR gene expression interference, egg length and width in the interference group were significantly smaller than those in the negative control group during the 10-30-day development stages. Additionally, the proportion of mature ovarian eggs in the interference group was significantly lower than that in the negative control group at the 10, 15, 20, 25, and 30-day developmental stages. DsVgR notably suppresses oviposition in D. citri, with fecundity decreasing by 60-70%. These results provide a theoretical basis for controlling D. citri using RNAi to mitigate the spread of HLB disease.


Assuntos
Citrus , Hemípteros , Animais , Feminino , Vitelogeninas/genética , Hemípteros/genética , Hidroponia , Controle de Pragas
19.
J Insect Sci ; 23(3)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37294686

RESUMO

Thrips hawaiiensis (Morgan) (Thysanoptera: Thripidae) is a sap-sucking pest that seriously damages several crops and reduces their economic value. Exposure to low concentrations of insecticides may have a sublethal effect on surviving insects. In order to provide a reference for the rational application of emamectin benzoate, its sublethal effects on the development and reproduction of T. hawaiiensis were evaluated. Pupal development time was significantly shorter in T. hawaiiensis treated with sublethal concentrations of emamectin benzoate (LC10 and LC20) than in control. Female adult longevity and female total longevity were significantly longer following LC20 treatment than in the control and LC10 treatment groups. Nevertheless, male adult longevity and male total longevity were significantly shorter in the LC10 treatment group than in the control and LC20 treatment groups. The sublethal concentration of emamectin benzoate (LC20) significantly shortened the preadult stages and the mean generation. Meanwhile, it significantly increased the finite rate of increase, intrinsic rate of increase, and net reproductive rate. The fecundity was significantly higher after LC20 treatment than after LC10 and control treatments. Compared with the control group, the LC10 and LC20 groups of T. hawaiiensis adults showed a significantly higher expression of the vitellogenin (Vg) and vitellogenin receptor (VgR) genes, which played a key role in increasing their fecundity. These findings suggest that short-term exposure to sublethal concentrations of emamectin benzoate may lead to a resurgence and secondary outbreak of T. hawaiiensis infestation. The results have practical applications for the management of this important and noxious pest.


Assuntos
Inseticidas , Tisanópteros , Feminino , Masculino , Animais , Tisanópteros/genética , Vitelogeninas/genética , Reprodução , Inseticidas/toxicidade , Expressão Gênica
20.
Gen Comp Endocrinol ; 340: 114306, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37150420

RESUMO

Vitellogenin (Vg) is the precursor of vitellin, which is an important female-specific protein stored in oocytes as the major nutrient and energy sources for embryogenesis in oviparous animals. In this study, we performed comprehensive genome-wide analysis of Vg gene family in the prawn Macrobrachium rosenbergii, and eight Vg genes designated as MrVg1a, MrVg1b and MrVg2-7 were identified. MrVg1a clusters with the previously described MrVg1b near the end of chromosome 46 and MrVg2 is on the chromosome 42 while MrVg3-7 cluster on the chromosome 23. All the putative MrVg proteins are characterized by the presence of three conserved functional domains: LPD-N, DUF1943 and vWD. Phylogenetic analysis revealed that MrVg1a shares 93% identity with MrVg1b and groups together into a branch while MrVg2-7 group into another branch, suggesting that MrVg1a, 1b and MrVg2-7 might diversify from a common ancestral gene. All the corresponding MrVg transcripts especially for MrVg1 exhibit high expression in the female hepatopancreas at late vitellogensis stage but extremely low in the ovaries except MrVg5, indicating that hepatopancreas is the major site of MrVgs synthesis. In the male, interestingly, MrVg5 and MrVg6 are also highly expressed in the testis, suggesting their potential involvement in testicular development. Bilateral ablation of eyestalk significantly upregulate all the MrVgs mRNA in the female hepatopancreas and the MrVg1 in ovary, but have no effect on the expression of MrVg2-7 in the ovary, demonstrating that eyestalk hormones could promote the ovarian development mostly by inducing the synthesis of MrVgs in the hepatopancreas but rarely in the ovary. Our results provide new insights into the prawn MrVgs family and improve our understanding of the potential role for each member of the family in the gonadal development of M. rosenbergii.


Assuntos
Decápodes , Palaemonidae , Animais , Feminino , Masculino , Vitelogeninas/genética , Vitelogeninas/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , Filogenia , Decápodes/metabolismo , Proteínas/metabolismo , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...